

THE INTERNATIONAL CONFERENCE ON THE 120TH ANNIVERSARY OF THE BULNAY EARTHQUAKE:

Aftershocks of the 2021 Khankh earthquake: analysis of temporal variation of the Omori law p-value

Muldir T^1 .

muldir@iag.ac.mn

¹Institute of Astronomy and Geophysics, MAS, Ulgii branch

ULAANBAATAR 2025.08.11

Introduction

Methodology

Data collection and results

Conclusion

Introduction

Temporal variation of aftershock decay following the 2021 Khankh earthquake using the Modified Omori Law, with a focus on the variation of the p-value over different time periods.

Tectonic structure: Located in the active Western Mongolian Rift System, influenced by the India–Eurasia plate collision

Mainshock: Mw 6.5 earthquake on January 11, 2021, near Khankh soum – one of the largest in Mongolia in recent decades

Macroseismic: Widely felt across northern Mongolia

- IV–VIII in Khuvsgul (based on 1,324 macroseismic responses)
 - III–V in Ulaanbaatar, Darkhan, Erdenet

Fault Mechanism: Combination of normal and right-lateral strike-slip faulting

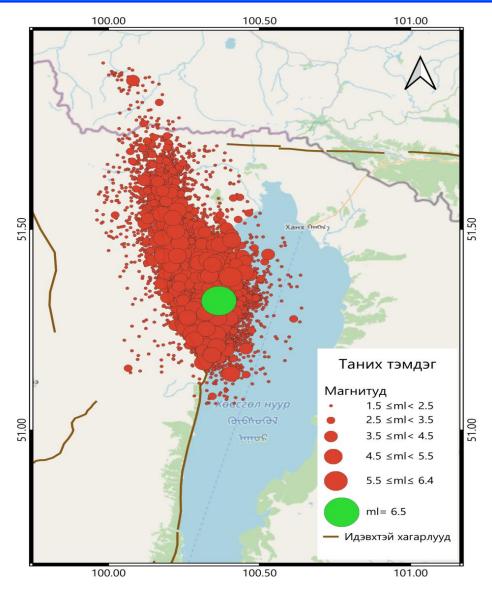


Figure 1: Map of epicenter distribution of Khankh earthquake (2021-2025)

Methodology

Omori Law (1894):

$$n(t) = \frac{K}{t}$$

n(t)- aftershocks per time unit

K-constant

M I

Issue: becomes **infinite** when t=0

Modified by Utsu (1961):

More realistic for real earthquake sequences

$$n(t) = \frac{K}{(t+c)^p}$$

C- time delay

P-decay rate

Utsu and his collaborators, based on over 200 earthquake data sets collected over 33 years, found that the value of c typically ranges from 0.01 to 1.00 in time units, and the value of p fluctuates between 0.6 and 2.5

Decay Rate (p):

If p>1: aftershocks decay quickly

If p<1: aftershocks persist longer

Total Number of Aftershocks N(t):

Integrate over time:

$$N(t) = \int_{0}^{t} n(\tau)d\tau = \int_{0}^{t} \frac{K}{(\tau + c)^{p}} d\tau$$

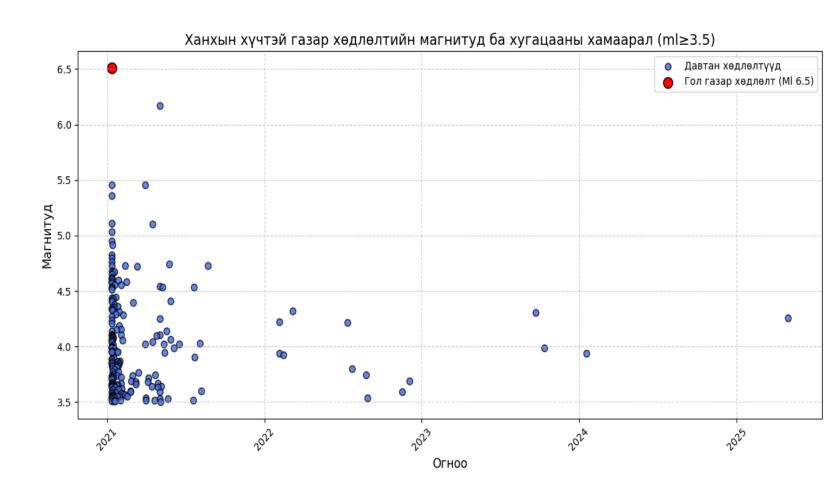
$$K \left[1 \quad 1 \quad 1 \right]$$

$$N(t) = \frac{K}{p-1} \left[\frac{1}{c^{p-1}} - \frac{1}{(t+c)^{p-1}} \right]$$

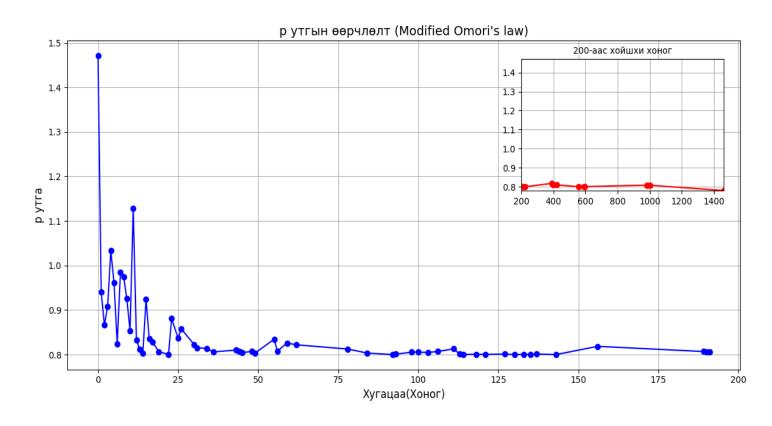
Accumulated aftershocks increase as time goes on, depending on p. To determine **p**, take logarithms:

$$logn(t) = logK - plog(t+c)$$

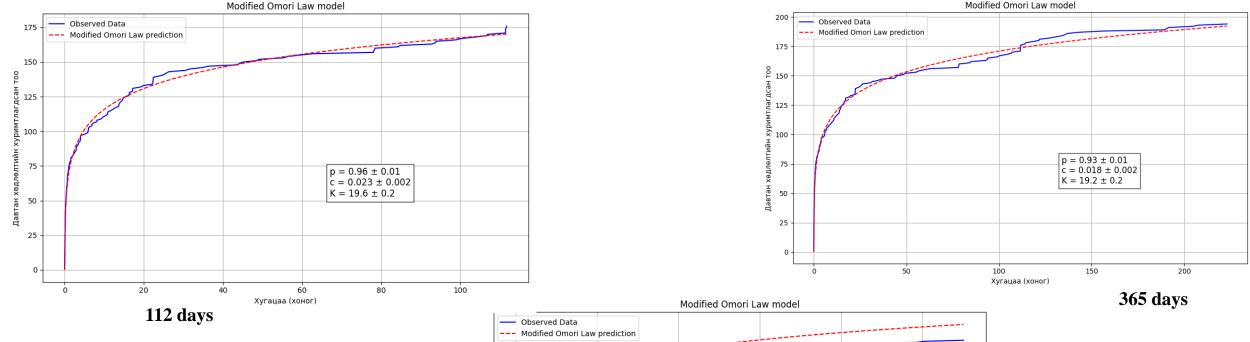
Solve for **p**:

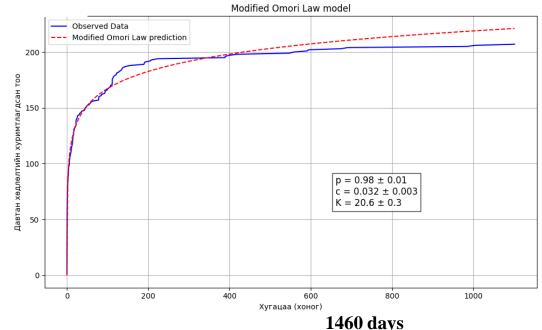

$$p = \frac{logK - logn(t)}{\log(t+c)}$$

> Magnitude timeline


- •Most aftershocks occurred within the first 3 months.
- •A major aftershock (M6.1) happened on May 3, 2021.
- •Aftershock activity declined significantly after mid-2021.

> Temporal variation of p-value


- •Aftershocks started with high intensity, indicated by p = 1.47 on Day 1.
- •A sharp drop in activity occurred on Day 2, where p decreased to 0.94.
- •From Days 2 to 5, p-values stabilized between 0.86 and 1.03.
- •After Day 10, a slow and steady decline was observed, indicating long-term decay in aftershock activity.


• The p-value reflects how quickly aftershock activity decays over time -higher p-values mean faster decay, while lower values indicate slower decay.

Omori Law Analysis (p, c, K)

Comparison of observed and predicted cumulative number of aftershocks using the Modified Omori Law.

- Short-term (112 days): Fast decay after mainshock.
- 1 year: Decay slightly slows, indicating extended activity.
- 4 years: The system stabilizes, p rises again, and the model predicts long-term decay with higher K.

• The 2021 Khankh aftershock sequence showed clear temporal changes in the p-value from the Modified Omori Law:

In 112 days: rapid decay (p = 0.96)

In 1 year: slower decay (p = 0.93)

In 4 years: increased p (p = 0.98), indicating stabilization

• Although seismicity is stabilizing, low-magnitude aftershocks may still occur for several more years. → Long-term monitoring is important for better risk assessment.

Bibliography

- A. F. Emanov, A. A. (2022). The Khuvsgul Earthquake of January 12, 2021 (M W = 6.7, M L = 6.9). Izvestiya, Physics of the Solid Earth.
- Battogtokh, D. B. (2021). The 2021 Mw 6.7 Khankh earthquake in the Khuvsgul rift, Mongolia. Mongolian Geoscientist.
- Guglielmi, A. V. (2016). Interpretation of the Omori law. zvestiya, Physics of the Solid Earth", 1-5page.
- Helmstetter, A. K. (2005). Importance of small earthquakes for stress transfers and earthquake triggering. Journal of Geophysical Research:
 Solid Earth.
- Molnar, P. &. (1975). Cenozoic tectonics of Asia: Effects of a continental collision. Science, 189, 419-426.
- Munkhsaikhan, A. T.-E. (2021). The Khankh strong earthquake (2021/01/11 21:32:56 UTC, ML6.5). Geophysics and astronomy, 58-67.
- Prokeponko, A. &.-M. (2008). the structure and tectonics of the Hovsgol rift zone in Mongolia. Journal of Paleolimnology ·.
- Rekapalli, H. K. (2022). Mw ≥ 5 aftershocks of the 2008 Sichuan earthquake: Analysis of temporal variation of Omori Law p-value. Retrieved from frontiersin: https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.964245/full
- Ritz, J. F. (2008). Active normal faulting in the Hovsgol rift zone, northern Mongolia. Journal of Asian Earth Sciences.
- Tokuji Utsu, Y. O. (1995). The Centenary of the Omori Formula for a Decay Law of Aftershock Activity. Journal of Physics of the Earth.
- U.S. Geological Survey. (1967). Retrieved from Earthquake catalog data for Mongolia region: https://earthquake.usgs.gov/earthquakes/search/
- Utsu, T. (1971). Aftershocks and earthquake statistics (II): Further investigation of aftershocks and other earthquake sequences based on a
 new classification of earthquake sequences. Journal of the Faculty of Science, Hokkaido University, Series 7.

THE INTERNATIONAL CONFERENCE ON THE 120TH ANNIVERSARY OF THE BULNAY EARTHQUAKE:

Thank you for your attention!